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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL MEMORANDUM 1286

METHOD OF SUCCESSIVE APPROXIMATIONS FOR THE SOLUTION OF
CERTATN FROBLEMS I AERODYNAMICS*
By M. E. Shvets
The approximate solution of certain problems in the bounda;y-layer
theory 1s considered hereln. The method used is a combination of
boundary-~layer and successive-approximation methods. The . essential

character of the method will be evident from the problems considered.

1. Solution of diffugion equation. - A number of physical processes
are described by the diffusion equation

 3a . g
YT K 3712 (1.1)

and the boundary conditions

a' (0,x) = Q = constant

i
(@]

q' (~,x) (1.2)

q' (z,0)

[
(@)

where gq 1s the concenbtration and wu the velocity. Expressed in non-
dimensional magnitudes

Q' = Qq
k!

z! =1—1-;-Z
k?

xt? =u_,x
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2 - ' NACA TM 1286

équation (1.1) assumes the form

d%q _ 3
Sz_% = a.% : (1.3)

The solution for boundary conditions (equation (1.2)) is

q=1-w(27‘x) (W(€)=V—2_;J;€ oM dx) (1.4)

where V¥ 1s the error functlon.

Thls solution gives the following expression for the diffusion
velocity:

6%) - 1 .= 0.57 (1.5)
(Eomﬁ

In considering the approximate solution of this problem, function
% +termed the "thickness of the boundary layer" is introduced and the
condition for 2z = = 18 written as the condition for 2z = 6. The fol-
lowing conditions are thus obtalned:

g (O,X) =1
1.6)
q (6,]{3) =0 (

The thickness of the boundary layer & is an unknown function of
the variable x; in order to determine it, the condition

(g%) =0 (1.7)
5

must be assumed.

With the aid of éuccessive approximations, an attempt will be made
to obtain g:
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o) - a4, )
a(®) - 9 + Qg \

@ Cggsay rag - . (1.8)
) gk ey

where each of the functions is determined by equations (1.9)

52
.0 )
oz
aqu .
Bzg_ 0 \ (1.9)
82‘12 .
= Q7 ¢ o
azz 1
2
aqn+1=é‘n
Bzz Y,

where the dot denotes differentiation with respect to x and satisfies
the boundary conditions of equations (1.6).

The operation of finding q from the given { with the aid of
equations (1.9) and all boundary conditions of the problem are denoted

o (6).

Equations (1.9) then assume the form

o

.qo____l_

]

9 = (%) - - . (1.10)

i1 = @ ((.ln)
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4
The process of successive approximation éonsidered gives the series
G=agt bGg) + @(8) + .« ok (&)  (111)
Stopping at the second approximation gives the following expression
for gq:
qgl--g-+z'6é(:—§-) . (1.12)

For boundary-layer thickness from the condition of equation (1.7)

58 = 3
(1.13)
5 = 2.45 4/x

For the value of & determined, the followlng equations are
obtained from equation (1.12) for the diffusion velocity and the con-

centration q:

¢2
g=1- 2F45 + 2i§5 E[?; - {] > (1.14)

(t?") )

By comparing the diffusion velocity computed by the exact equation
(1.4) and the approximate equation (1.14) with the corresponding curves
in figure 1, the effectiveness of the approximation method can be seen.

2. Approximate integration of boundary-layer equation of flat
plate in incompressible flow. - A flat plate moves with constant velocity
U. The equations of motion and continuity for the laminar boundary

layer will be
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o s 52 h
uf u' u'
1 . 1 —
LTt Sy = 3512
$ (2.1)
Bu' + Bv' =0
= ST
where V 18 the kinematlc viscosity.
Elimination of the vertical component of veiocity glves
yt
d2yr du'  ou' ou'
1% = u' - Ady?
e - T (2.2)
0
The nondIimensional magnitudes ~
1
x' = Ix V=
2.3
- (2.3)
V! = v /= u' = Un
AR

are introducted where 1 1s the length of the plate and R 1is the
Reynolds number. Equation (2.2) assumes the form

J
d%u _ . du ngﬁ du
e = q - dy (2.4)
Sy 2 ox 9Jy o ox _
The solution of equation (2.4) must satisfy the conditions

u=0 for y=0

n
]

(2.5)

u 1l for ¥y 6]

It
It

The first approximation is obtained by solving the eguation

azu/ay2 = 0 for the boundary conditions of equations (2.5). This
approximation has the form u = y/5. By substituting the first
approximation for u 1In the right side of equation (2.4) and carrying
out two quadratures, the second approximation is obtained:

» 3 .
8y ¥
u=%+24(1'83) | (2.6)
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. As is shown by'computation, the third approximation is not required.
The magnitude & 1is determined from the condition (Bu/ay)8 = O.

5=44% (2.7)
The frictional stress T according to equation (2.6) is
. =§%) =%+2§4=o.333
0 7=
or in dimensional magnitudes

T =w/EU_3‘-——-—°\‘/Z_’z_3 (2.9)

This equation differs from the exact numerical coefficient, which
according to Blasius (reference 1) is 0.332.

(2.8)

Substituting the value of & in equation (2.8) for the velocity

profile yields
1,4 ¥y
{ - =5t (E = ';\7—';) (2.10)

The vertical component of the velocity is determined from the con-
dition of continuity

(9N =

nm =

In figure 2 are shown the velocity profiles obtained by the approx-
imate and exact solutions, The exact solution is mathematically rather

complicated.

3. Motion of fluid in laminar boundary layer with longlitudinal
pregsure drop., - In this case, the motion is described by the egquation

with the boundary conditions

n
o
o
H
e

N
o

u

n
c
)
[e]
H
L

H
o

u
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If the calculation is restricted to the second approximation,

=505 (8 -12€ + 1) - 2 (#* -¢) + &t (£ =1y/0)
. The equation for determining the boundary-layer thickness, which is
obtained from the condition (Bu/ai)_E = 0 has the form
S 824 2uds =1
8 8

If it 1s assumed that & =0 for x =0

X
;
52=:-g-f TPax
w® Jo

For the frictional stress at the wall

T, = (BF;:)O -2 [% + af;J= H:j-(j: U5dx)-l/2 [1 + %;Lx USGJ:]

The point of separation of the boundary layer is obtained from the
condition
X

4_2 ax = - 1
U Jo
4, Heat-transfer in laminar boundary layer on plate in incompres-
givle fluid, constants of which are independent of temperature. - If
the addition of heat due to friction 1s neglected and the process is
considered steady, the equation of heat conductivity 1s obtained:

, OT 3%

, OT _ o ofT
uh oSS+ v 57 ° k S E (4.1)

When the nondimensional magnitudes (equations (2.3)) and the non-
dimensional temperature

Ty - T

T

ot SRR - o (4.2)
1~ To -
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where T, 1is the absolute temperature of the plate , and TO the abso-

lute temperature of the fluid on the edge of the boundary layer, are
introduced equation (4.1) assumes the form '

2 )
u%{i+v%=%a—£ (4.3)

where P 1is the Prandtl number. The boundary conditions will be

S

0 for y =0

9 =1 for y=23

1]

If the values of the velocities according to Blasius (reference 1)
are substituted in equation (4.3), the equation is solved and leads to
the following result:

4 £
3(%) = C(PJ oxp '—'éf-f der}di (4.4)
0 0

where . 3 N\
- P -1
: . ¢(P) = 6Xp { 5 ®dn ) af
0] 0
@' (§) = u ? (4.5)

J
¢ = =

' J

As is seen from these relations, for a given Prandtl number P the
temperaturs and the flow of heat can be obtained only by the method of
numerical Integration. The solution is rendered considerably more com-

plicated if, in equation (4.1), the effect of the heat due to the work
of friction is considered.

By the interpolation of Pohlhausen in the interval 0.6 < P < 15.0,
the function C(P) may be represented in the form

c(P) = 0.332.)F
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The problem of the heat-transfer of the plate has been the subject
of many investigations, for exumple references 2 and 3. Piercy and
Schmidt (reference 4) applying an approximate method similar to the
method of Oseen arrived at the result

¢(P) = 0.404 «\3/9

. This result is about Z0 percent greater than the result of
~ Pohlhausen,

- The problem under consideration will now be solved by.the approx-
imate method. As a first approximation, ¥ = y/5.

Substituting the values of the component velocities obtained in

section 2 and the derivatives of the temperature computed by the first
approximation in the left side of equation (4.3) yields the second

approximation:
P )yt /1§ 7 z's
+ ‘%(ﬁ'g) —r 5“‘ ) (4.6)
98 x ] 1792x

3 /s .
P 8 (5 1) 1 (1 6) 6
e (2-.=)+ A (4.7)
) 372 2
96’\’3{{8 A N C - S S

From the condition (Bi/By)8 = 0, boundary-layer thickness is
obtained

<
]
o)

where

@}
I

~ J.E3 :

At a Prandtl number P = 1, the boundary-layer thickness ig
10 percent less than in the dynamic problem of the flow about a plate.
This difference is explained by the fact that the solution (4.68) is
approrimate. If P = 0.8 (air) is agssumed, the boundary-layer thickness

will De
= 4 \’x

By differentiating equation (4.6) with respect to y and setting
y = 0, the rfollowing expression for the flow is obtained:
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a?> 3 1
<:;y 0 V X

When this result is compared with the results obtained by others
(Piercy and Schmidt, reference 4), it is found to be cloger to the
accurate value.

Substituting equation (4.8) in equation (4.6) yields the tempera-
ture profile

. 3
N GREIEE S G I OV ES RO

In figure 3 are given the profiles of the nondimensional tempera-
ture ¢ for the values P =1 and P = 7. The solid curves are com-
puted by the approximate formula (4.6) and the dashed ones by the
accurate formula. These curves lie close to each other.

5. Cooling of heated sphere by laminar flow of fluid at small
values of Reynolds number. - The problem of the slow steady laminar flow

about a sphere was considered by Stokes (reference 5). The magnitude of
the tangentlial component of the velociby of the fluid at the distance r
from the center of a spherical drop of radius Tq is determined by the

expression

3T0 1 ro3
u6=Usin6 l+-4—-1-‘—--z—r? (5.1)

The magnitude y 1is introduced by the relation r = Xy + Y-
For small value of y (near the surface of the sphers)

= Na
g = 3U g sin 8 (5.2)

In accordance with Leibenson (reference 6), the equation of heat
conductivity is presented in the form

AT _ i ST | (5.4)

or, substituting the value of u,

. 2
3 8in 6 , OT _ O°T
U E——————— T c— 5'5
kd 7 ox ayz ( )
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The solution of this equation must satisfy the following boundary
and Initial conditions:
T=T. for 3 0

0
T =20 for 3y

© (5.6)

T 0 for x =20

For simplification of the integration of equation (5.5), in accor-
dance with Leibenson (reference 6), the magnitude (3/kd) sin 6 1is at
first assumed constant. The following variables are introduced:

=2 \[?'

ki x _E
U6 sin 6

(5.7)

Instead of equation (5.5) equation (5.8) is obtained:

F FTV_ (5.8)

The solution of this equation is now obtained by the approximste
method. As previously, the boundary-layer thickness is denoted by 8.
If the calculation is restricted to the second approximation, the
approximate solution of equation (5.8) is obtained:

T [ -] (5.9

Determining the boundary-layer thickness from equating the flow at
the edge of the boundary layer to zero ylelds the equation
sl/2 § _ o

g 5.10
5 = 2.08 ¢ 2/3 (5:10)

When the value of & is substituted in equation (5.9)

r-1- 407 1@ (12



NACA T™M 1286

Computing the velocity of the flow of heat and returning to the
previous varlables yields in succession

-_— T él—-' . = 2 =
v STy 581/2 51/3

or

0.46

U sin &

(5.12)

The heat glven off by the sphere for small values of the Reynolds

number R

for alr was considered by Lelbenson.

As a result of the

accurate solution of equation (£.8), he obtalned (reference 6, p. 280)

equation (5.12) but with the numerical coefficient 0.85.

8. Free convection at plane vertical wall. - Let the origin of

coordinates be at the edge of the plate; the x-axis 1s directed along
the olane of the plate; the y-~axis is perpendicular to the x-axis.

From the physical considerations it is clear that the velocity and
is the temperature of

the tenperature difference

T~T

0 (where Ty

the air at large distances from the plate) differ appreciably from zero
only in the thin boundary layer at the surface of the plate.

For this reason, the process of free convection is described by

the boundary-~layer equations

! 1 NELy
ou ou o-u
uf + v - = D +']3 T’-Tw
ox' oy! 3y 2 eb ( o)
S A | L deT
ox' oy' Jy'
Sut L ov'
S5t 5T T

For the boundary conditions
u=0 v=20

u 0

1]

T=T for y

T=Ty for y

]

1t

> (6.1)

(6.2
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- vhere T, 1is the temperature of the plate.

‘From the parameters entering the equations, measures of length and
velocity can be constructed: N ' o

2 1/3
[gszl = To)]

1/3
[US(T]_ - To).B]- :
Tquations (6.1) reduce to the form

¥ N2 W

—_
~—
N
.
)]
~—

du du du o%u
U <— - ST < d.:)" = = + 4
OxX oy o ox Byc &
(6.4)
1 52

where

8 (C) =1 ' (6.5)

The boundary layer of convection & 1s next considered and the
problem is solved by the approximate method.

The Tirst approximation is

S
=1 5
43 2 B, (6.8)
u=d4d - 4 5
63 2 3

Substituting the values of u and. ¢ in the left side of the
second equation of equations (€.4) yields the second aopproximation
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. 6 5 4\ .2
_ p4 B Y __y_ By |_ 8
¥=1 ’5+P{52 (2406 0t 24 s 7 (6.7)

The determination of the second approximation for the velocity,
which is obtained without difficulty, is omitted. The boundary-layer
hickness is determined from the condition (ag/ay)6 = 0. Thus

32 _ 240
875 = 173
or 8
X1/4 (6.8)
d = 3.086 (§)

Substituting the value of § in equation (6.7) yields the temper=-
ature profile

6 5 4
-1 -38(2 L (L L (Y Oy
$=1-1 (a) I (5) - 1T (a) + 11 (a) (6.9)

whence the rate of heat flow will be

e

The accurate solution of the problem of the heat-transfer from a
heated vertical wall was obtained by Pohlhausen (reference 7), who
showed that if the magnitude

be(Ty - TOT/ 4)
- ¢ <y C = | ——=a 6.10

is Introduced as an independent variable and In place of the required
functions, new functions defined by the relations

u = 4062 AT @' (§)

T - Tg

nT T

are substituted, the initial system of equations takes the form
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2498 =0

P+ 3 Q" - 29
L o (8.11)
5 4 5P ESr = O

The golution of this system is obtained by numerical integration.
From eguations (6.10) and (6.11), the boundary-layer thickness will be
of the order & “‘x1/4. In figure 4, taken from reference 8,is given
the curve of ¢ for air according to Pohlhausen. On the same figure
the dashed curve shows the graph of ¢ computed by equation (6.9); for
y/8 <3/,1 both curves practically coincide.

7. Stationary turbulent diffusion. - In the solution of certain
problems of geophysics, it is necessary to deal with the eguation of
diffusion in which the so-called- coefficlent of turbulent exchangs A
enters ingtead of a constant coefficient of diffusion. For steady con-
ditions, A depends only on the distance z.

The problem 1s restricted to obtaining the second approximation,
which is entirely sufficient for practical purposes. The problem of
the character of the dependence of the coefficient of turbulent exchange
on the distance 2z 1is not considered. Both sides of the diffusion
equation

u (z) ‘a“ 24 (2) 3‘12'- (7.1)

are nmultiplied by A (z) and the new variable is Introduced:

Z
dz
1 =‘J~ - (7.2)
0 A

Equation (7.1) then assumes the form

<Iu>(n)3(L 8—8-9'—
(7.3)
(va = ¢(n))

Let the boundery and initial conditions bdbe
q' = gy for 2z =20

0 for =z (7.4)

"
8

i,
i

it
o

qg' =0 for x
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In order to simplify these conditions, g¢' = CRCH then
g=1 for z =0

At the edge of the boundary layer, the condition must exlist that
q = 0, that is, that g (&) = C.

Thne first approximation has the form

q:l—-g (7.5)

The second approximation 1s given by

. n o)
q:l-%+—§- f :y(n-y)d?ély-él y(3 - ¥y) ¢ay (7.8)
0 0
3 15 " [P
4. .18 yody - = y(8 - y)ddy (7.7)
on 5 " 2 5
0 0

The condition (Bq/én)8 = 0 gives Tor the boundary-layer thickness

3}
éf v2 ddy = &° (7.8)
0

0,

5 the eguation

]

From equation (7.7) for n

< A
_(éi =l+_5_j (& - y)d dy (7.9)
on o ol 63
0

By making use of equation (7.8), equations (7.9) and (7.6) for the con-
centration may be transformed into the form
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o) .
. . J
..(gﬁ.)4=_1.+_52_ yedy = &
o n_o.,_Bn. 5 o - o JZ_

1 [ Iy
q=l+3~j‘ y(n - y)®dy - n 7
_ 2 Jo 2

5
dq =f y¢dy
0
5
J2= yzibdy
0

Comparison with the exact solutlons shows the effectiveness of the
given approximation method.

(7.10

where

Translated by S. Reiss,
National Advisory Committee
for Aeronautics.
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